Determining α_s and nPDFs from jets in DIS and photoproduction

Michael Klasen

Institute for Theoretical Physics, University of Münster

16 November 2016

Work done in collaboration with T. Biekötter, G. Kramer and M. Michael

References

Two recent publications:

- MK, G. Kramer, M. Michael NNLO contributions to jet photoproduction and determination of α_s Phys. Rev. D 89 (2014) 074032 [arXiv:1310.1724]
- T. Biekötter, MK, G. Kramer NNLO contributions to inclusive jet production in DIS and determination of α_s Phys. Rev. D 92 (2015) 074037 [arXiv:1508.07153]

References

Referring to two final HERA publications:

- H. Abramowicz et al. [ZEUS Collaboration] Inclusive-jet photoproduction at HERA and determination of α_s Nucl. Phys. B 864 (2012) 1
- V. Andreev et al. [H1 Collaboration] Measurement of multijet production in ep collisions at high Q^2 and determination of the strong coupling α_s Eur. Phys. J. C 75 (2015) 65

References

Referring to two final HERA publications:

- H. Abramowicz et al. [ZEUS Collaboration] Inclusive-jet photoproduction at HERA and determination of α_s Nucl. Phys. B 864 (2012) 1
- V. Andreev et al. [H1 Collaboration] Measurement of multijet production in ep collisions at high Q^2 and determination of the strong coupling α_s Eur. Phys. J. C 75 (2015) 65

Upcoming:

V. Andreev et al. [H1 Collaboration]
 Measurement of jet production cross sections in deep-inelastic ep scattering at HERA
 DESY 16-200, to be submitted to Eur. Phys. J. C

Unified approach to NNLO soft and virtual corrections

N. Kidonakis, Int. J. Mod. Phys. A 19 (2004) 1793

- Full NNLO calculations challenging, slowly making progress
- Soft/virtual corrections often dominant, e.g. close to threshold

$$z \equiv \frac{(p_1+p_2)^2}{(p_a+p_b)^2} \rightarrow 1$$

- Resummation of these corrections possible to all orders
- Reexpansion gives approximate NNLO (aNNLO) results
- ullet Results depend on 1PI or PIM kinematics, $\overline{\mathrm{MS}}$ or DIS scheme

NLO master formula

$$d\sigma_{ab} = d\sigma_{ab}^{B} \frac{\alpha_{s}(\mu)}{\pi} [c_{3}D_{1}(z) + c_{2}D_{0}(z) + c_{1}\delta(1-z)]$$

$$+ \frac{\alpha_{s}^{d\alpha_{s}+1}(\mu)}{\pi} [A^{c}D_{0}(z) + T_{1}^{c}\delta(1-z)]$$

$$D_{I}(z) = \left[\frac{\ln^{I}(1-z)}{1-z}\right]_{+}$$

$$d_{\alpha_{s}} = 0, 1, 2, ..., \text{ if Born is of } \mathcal{O}(\alpha_{s}^{0,1,2,...})$$

Leading coefficients (simple color flow)

QCD Compton process: $\gamma q \rightarrow qg$

$$\begin{array}{rcl} c_3 & = & C_F - N_C, \\ c_2 & = & C_F \left[-\ln \left(\frac{\mu_p^2}{s} \right) - \frac{3}{4} + 2\ln \left(\frac{-u}{s} \right) \right] + N_C \ln \left(\frac{t}{u} \right) - \frac{\beta_0}{4}, \\ c_1^{\mu} & = & -\frac{3C_F}{4} \ln \left(\frac{\mu_p^2}{s} \right) + \frac{\beta_0}{4} \ln \left(\frac{\mu^2}{s} \right) \end{array}$$

Leading coefficients (simple color flow)

QCD Compton process: $\gamma q \rightarrow qg$

$$\begin{array}{rcl} c_3 & = & C_F - N_C, \\ c_2 & = & C_F \left[-\ln \left(\frac{\mu_p^2}{s} \right) - \frac{3}{4} + 2\ln \left(\frac{-u}{s} \right) \right] + N_C \ln \left(\frac{t}{u} \right) - \frac{\beta_0}{4}, \\ c_1^{\mu} & = & -\frac{3C_F}{4} \ln \left(\frac{\mu_p^2}{s} \right) + \frac{\beta_0}{4} \ln \left(\frac{\mu^2}{s} \right) \end{array}$$

Photon gluon fusion: $\gamma g \rightarrow q \bar{q}$

$$c_{3} = 2(N_{C} - C_{F}),$$

$$c_{2} = -\frac{3C_{F}}{2} + N_{C} \left[-\ln\left(\frac{\mu_{p}^{2}}{s}\right) + \ln\left(\frac{tu}{s^{2}}\right) \right],$$

$$c_{1}^{\mu} = -\frac{\beta_{0}}{4}\ln\left(\frac{\mu_{p}^{2}}{s}\right) + \frac{\beta_{0}}{4}\ln\left(\frac{\mu^{2}}{s}\right).$$

Leading coefficients (complex color flow)

Quark-(anti-)quark scattering: qq o qq and qar q o qar q

$$c_{3} = 2C_{F},$$

$$c_{2} = -C_{F} \ln \left(\frac{\mu_{\gamma}^{2}}{s}\right) - C_{F} \ln \left(\frac{\mu_{p}^{2}}{s}\right) - \frac{11}{2}C_{F}$$

$$c_{1}^{\mu} = -C_{F} \left[\ln \left(\frac{p_{T}^{2}}{s}\right) + \frac{3}{2}\right] \ln \left(\frac{\mu_{p}^{2}}{s}\right) + \frac{\beta_{0}}{2} \ln \left(\frac{\mu^{2}}{s}\right)$$

Leading coefficients (complex color flow)

Quark-(anti-)quark scattering: qq o qq and qar q o qar q

$$c_{3} = 2C_{F},$$

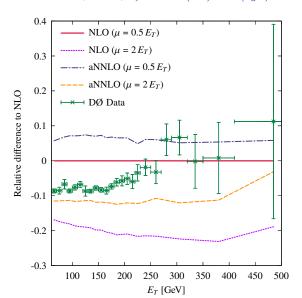
$$c_{2} = -C_{F} \ln \left(\frac{\mu_{\gamma}^{2}}{s}\right) - C_{F} \ln \left(\frac{\mu_{p}^{2}}{s}\right) - \frac{11}{2}C_{F}$$

$$c_{1}^{\mu} = -C_{F} \left[\ln \left(\frac{p_{T}^{2}}{s}\right) + \frac{3}{2}\right] \ln \left(\frac{\mu_{p}^{2}}{s}\right) + \frac{\beta_{0}}{2} \ln \left(\frac{\mu^{2}}{s}\right)$$

Similarly for $q\bar{q}\leftrightarrow gg$, $qg\to qg$, and $gg\to gg$.

NNLO master formula (simple color flow)

$$d\sigma_{ab} = d\sigma_{ab}^{B} \frac{\alpha_{s}^{2}(\mu)}{\pi^{2}} \left\{ \frac{1}{2} c_{3}^{2} D_{3}(z) + \left[\frac{3}{2} c_{3} c_{2} - \frac{\beta_{0}}{4} c_{3} + \sum_{j} C_{f_{j}} \frac{\beta_{0}}{8} \right] D_{2}(z) \right.$$


$$+ \left[c_{3} c_{1} + c_{2}^{2} - \zeta_{2} c_{3}^{2} \frac{\beta_{0}}{2} T_{2} + \frac{\beta_{0}}{4} c_{3} \ln \left(\frac{\mu^{2}}{s} \right) + \dots \right] D_{1}(z)$$

$$+ \left[c_{2} c_{1} - \zeta_{2} c_{2} c_{3} + \zeta_{3} c_{3}^{2} - \frac{\beta_{0}}{2} T_{1} + \frac{\beta_{0}}{4} c_{2} \ln \left(\frac{\mu^{2}}{s} \right) + \dots \right] D_{0}(z)$$

$$+ \left[\frac{1}{2} c_{1}^{2} - \frac{\zeta_{2}}{2} c_{2}^{2} + \frac{1}{4} \zeta_{2}^{2} c_{3}^{2} + \zeta_{3} c_{3} c_{2} + \dots + R \right] \delta(1 - z) \right\}$$

Inclusive jet hadroproduction

N. Kidonakis, J. Owens, Phys. Rev. D 63 (2001) 054019 (Fig. 2)

Jet production in DIS

T. Biekötter, M. Klasen, G. Kramer, Phys. Rev. D 92 (2015) 074037

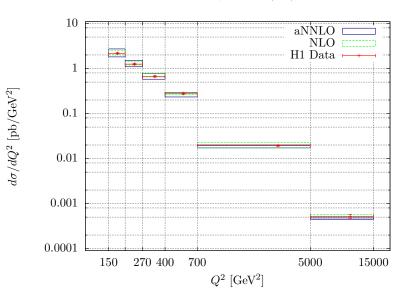
Experimental conditions:

- HERA-II (2003-2007), $\sqrt{S} = 319$ GeV, $\mathcal{L} = 351$ pb⁻¹
- 150 $\text{GeV}^2 < Q^2 < 15000 \text{ GeV}^2$, 0.2 < y < 0.7
- $p_T^{
 m jet} > 7$ GeV, $-1.0 < \eta^{
 m jet} < 2.5$, k_T -algorithm with R=1

Jet production in DIS

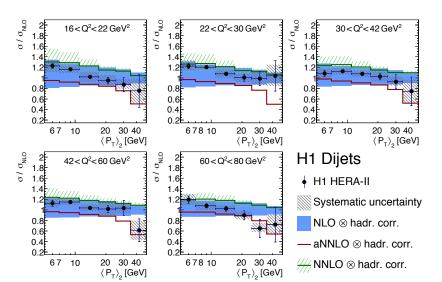
T. Biekötter, M. Klasen, G. Kramer, Phys. Rev. D 92 (2015) 074037

Experimental conditions:


- HERA-II (2003-2007), $\sqrt{S} = 319 \text{ GeV}$, $\mathcal{L} = 351 \text{ pb}^{-1}$
- 150 $\text{GeV}^2 < Q^2 < 15000 \text{ GeV}^2$, 0.2 < y < 0.7
- $p_T^{
 m jet} > 7$ GeV, $-1.0 < \eta^{
 m jet} < 2.5$, k_T -algorithm with R=1

Theoretical input:

- Central scales: $\mu^2 = (Q^2 + p_T^2)/2$, $\mu_p^2 = Q^2$
- Proton PDFs: MSTW2008, $n_f = 5$, $\alpha_s(M_Z) = 0.110...0.130$
- Hadronization corrections modeled with PYTHIA


Inclusive jet production in DIS

T. Biekötter, M. Klasen, G. Kramer, Phys. Rev. D 92 (2015) 074037

Dijet production in DIS

H1 Coll., DESY 16-200, to be subm. to EPJC

Jet photoproduction

M. Klasen, G. Kramer, M. Michael, Phys. Rev. D 89 (2014) 074032

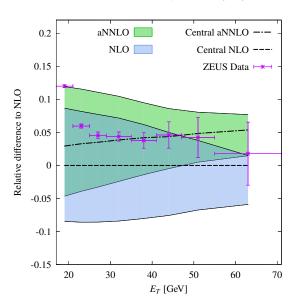
Experimental conditions:

- HERA-II (2005-2007), $\sqrt{S} = 319$ GeV, $\mathcal{L} = 300$ pb⁻¹
- $Q^2 < 1 \text{ GeV}^2$, 142 GeV < W < 293 GeV
- $p_T^{
 m jet} > 17$ GeV, $-1.0 < \eta^{
 m jet} < 2.5$, k_T -algorithm with R=1

Jet photoproduction

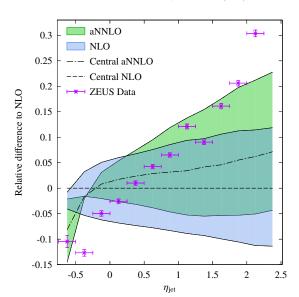
M. Klasen, G. Kramer, M. Michael, Phys. Rev. D 89 (2014) 074032

Experimental conditions:


- HERA-II (2005-2007), $\sqrt{S} = 319$ GeV, $\mathcal{L} = 300$ pb⁻¹
- $Q^2 < 1 \text{ GeV}^2$, 142 GeV < W < 293 GeV
- $p_T^{
 m jet} > 17$ GeV, $-1.0 < \eta^{
 m jet} < 2.5$, k_T -algorithm with R=1

Theoretical input:

- Central scales: $\mu = \mu_p = \mu_\gamma = p_T$
- Proton PDFs: CT10, $n_f = 5$, $\alpha_s(M_Z) = 0.112...0.124$
- Photon PDFs: GRV-HO, transformed from DIS_{γ} to \overline{MS}
- Hadronization corrections modeled with PYTHIA


Inclusive jet photoproduction

M. Klasen, G. Kramer, M. Michael, Phys. Rev. D 89 (2014) 074032

Inclusive jet photoproduction

M. Klasen, G. Kramer, M. Michael, Phys. Rev. D 89 (2014) 074032

Determination of α_s

M. Klasen, G. Kramer, M. Michael, Phys. Rev. D 89 (2014) 074032

Determination at NLO:

$$\alpha_s(M_Z) = 0.121^{+0.002}_{-0.002}(\text{exp.})^{+0.005}_{-0.003}(\text{th.})$$

Determination of α_s

M. Klasen, G. Kramer, M. Michael, Phys. Rev. D 89 (2014) 074032

Determination at NLO:

$$\alpha_s(M_Z) = 0.121^{+0.002}_{-0.002}(\text{exp.})^{+0.005}_{-0.003}(\text{th.})$$

Determination at aNNLO:

$$\alpha_s(M_Z) = 0.120^{+0.002}_{-0.002}(\text{exp.})^{+0.003}_{-0.003}(\text{th.})$$

EIC White Paper, 1212.1701 [nucl-ex]

eRHIC conditions:

- $E_{\rm e}=16...21~{
 m GeV}$ and $E_A=100~{
 m GeV}
 ightarrow \sqrt{s}=80...90~{
 m GeV}$
- Integrated luminosity: $\mathcal{L} = 10...3 \text{ fb}^{-1}$

EIC White Paper, 1212.1701 [nucl-ex]

eRHIC conditions:

- $E_e=16...21~{\sf GeV}$ and $E_A=100~{\sf GeV}
 ightarrow \sqrt{s}=80...90~{\sf GeV}$
- Integrated luminosity: $\mathcal{L}=10...3~\mathrm{fb^{-1}}$

MEIC conditions:

- $E_e=12~{
 m GeV}$ and $E_A=40~{
 m GeV}
 ightarrow \sqrt{s}=45~{
 m GeV}$
- Integrated luminosity: $\mathcal{L}=100~{
 m fb^{-1}}$

EIC White Paper, 1212.1701 [nucl-ex]

eRHIC conditions:

- $E_e=16...21~\text{GeV}$ and $E_A=100~\text{GeV}
 ightarrow \sqrt{s}=80...90~\text{GeV}$
- Integrated luminosity: $\mathcal{L}=10...3~\mathrm{fb^{-1}}$

MEIC conditions:

- $E_e=12$ GeV and $E_A=40$ GeV $o \sqrt{s}=45$ GeV
- Integrated luminosity: $\mathcal{L}=100~{\rm fb^{-1}}$

Detector specifications:

- Electron or JB method: $Q^2 > 1$ GeV² and $0.01 \le y \le 0.95$
- Electromagn. (hadr.) calorimeter: $-4(-1) < \eta^{\rm jet} < 4$
- Jet reconstruction in the Breit frame with $ho_T^{
 m jet} >$ 4 GeV

EIC White Paper, 1212.1701 [nucl-ex]

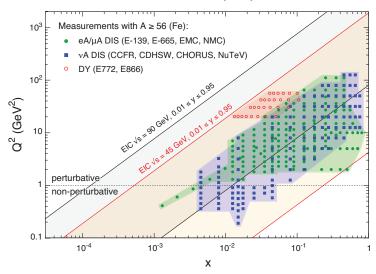
eRHIC conditions:

- $E_e=16...21~{\sf GeV}$ and $E_A=100~{\sf GeV}
 ightarrow \sqrt{s}=80...90~{\sf GeV}$
- Integrated luminosity: $\mathcal{L}=10...3~\mathrm{fb^{-1}}$

MEIC conditions:

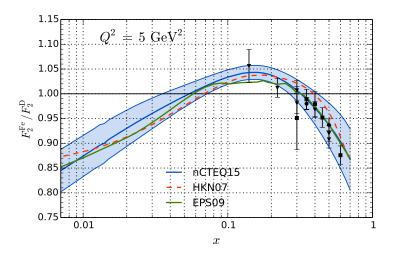
- $E_e=12$ GeV and $E_A=40$ GeV $o \sqrt{s}=45$ GeV
- Integrated luminosity: $\mathcal{L} = 100 \text{ fb}^{-1}$

Detector specifications:

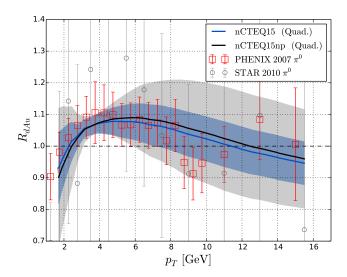

- Electron or JB method: $Q^2 > 1$ GeV² and $0.01 \le y \le 0.95$
- Electromagn. (hadr.) calorimeter: $-4(-1) < \eta^{\rm jet} < 4$
- Jet reconstruction in the Breit frame with $ho_T^{
 m jet} >$ 4 GeV

Theoretical input:

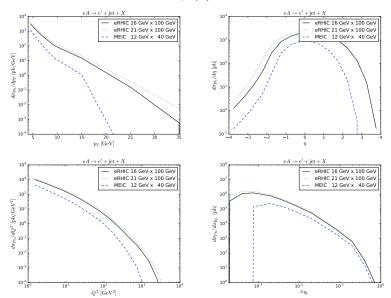
- Central scales: $\mu^2 = (Q^2 + p_T^2)/2$, $\mu_p^2 = Q^2$
- Nuclear PDFs: nCTEQ15(-np) with 32 error PDFs


Kinematic acceptance in DIS, DY and at two EICs

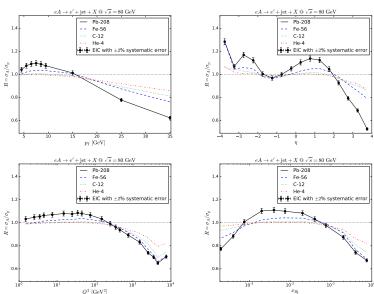
EIC White Paper, 1212.1701 [nucl-ex]

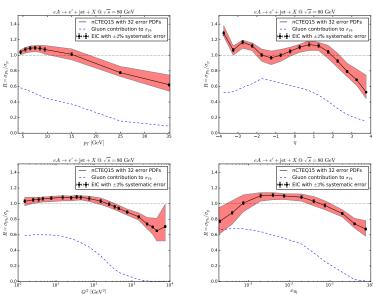

Current information from F_2^A/F_2^D

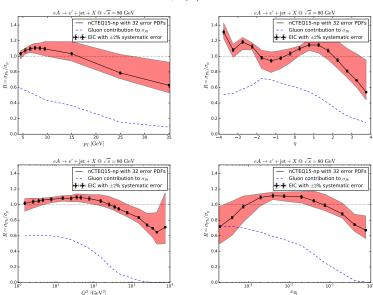
K. Kovarik et al., Phys. Rev. D 93 (2016) 085037



Additional information from inclusive pion data


K. Kovarik et al., Phys. Rev. D 93 (2016) 085037


Inclusive jet production at different EICs


Inclusive jet production on different nuclei

Sensitivity to nPDFs estimated with nCTEQ15

Sensitivity to nPDFs estimated with nCTEQ15-np

Theoretical approach:

 Approximate NNLO from threshold resummation More reliable at higher Q² or E_T

Theoretical approach:

 Approximate NNLO from threshold resummation More reliable at higher Q² or E_T

Determination of α_s :

• Final HERA data on 1-/2-/3-jets in DIS and photoproduction Central α_s value improved, theoretical error reduced \rightarrow PDG

Theoretical approach:

 Approximate NNLO from threshold resummation More reliable at higher Q² or E_T

Determination of α_s :

• Final HERA data on 1-/2-/3-jets in DIS and photoproduction Central α_s value improved, theoretical error reduced \rightarrow PDG

Nuclear PDFs from jets at the EIC:

• Kinematic range extends to $Q^2 \leq 10^3~{\rm GeV^2}$ and $x_{{\rm Bj.}} \geq 10^{-4}$ Current error shrinks by factor of 5 ... 10, in particular for $f_{g/A}$

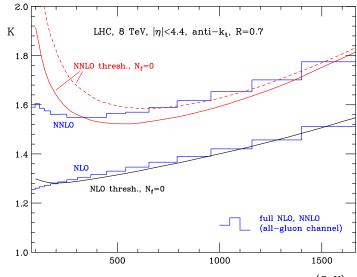
Theoretical approach:

 Approximate NNLO from threshold resummation More reliable at higher Q² or E_T

Determination of α_s :

• Final HERA data on 1-/2-/3-jets in DIS and photoproduction Central α_s value improved, theoretical error reduced \rightarrow PDG

Nuclear PDFs from jets at the EIC:


• Kinematic range extends to $Q^2 \leq 10^3~{
m GeV^2}$ and $x_{
m Bj.} \geq 10^{-4}$ Current error shrinks by factor of 5 ... 10, in particular for $f_{g/A}$

Outlook:

- Improve Kidonakis formalism to account for finite jet mass
 D. de Florian, P. Hinderer, A. Mukherjee, F. Ringer, W. Vogelsang,
 Phys. Rev. Lett. 112 (2014) 082001
- Full NNLO calculations, e.g. $gg \rightarrow gg$ J. Currie, A. Gehrmann, N. Glover, J. Pires, JHEP 1401 (2014) 110

Jet production in DIS at higher Q^2

D. de Florian, P. Hinderer, A. Mukherjee, F. Ringer, W. Vogelsang, Phys. Rev. Lett. 112 (2014) 082001

